Skip to contents

Get cohort counts from a cohort_table object.

Usage

cohortCount(cohort)

Arguments

cohort

A cohort_table object.

Value

A table with the counts.

Examples

 # \donttest{
library(omopgenerics)
library(dplyr, warn.conflicts = FALSE)

person <- tibble(
  person_id = 1, gender_concept_id = 0, year_of_birth = 1990,
  race_concept_id = 0, ethnicity_concept_id = 0
)
observation_period <- tibble(
  observation_period_id = 1, person_id = 1,
  observation_period_start_date = as.Date("2000-01-01"),
  observation_period_end_date = as.Date("2023-12-31"),
  period_type_concept_id = 0
)
cohort <- tibble(
  cohort_definition_id = c(1, 1, 1, 2),
  subject_id = 1,
  cohort_start_date = as.Date(c(
    "2020-01-01", "2021-01-01", "2022-01-01", "2022-01-01"
  )),
  cohort_end_date = as.Date(c(
    "2020-01-01", "2021-01-01", "2022-01-01", "2022-01-01"
  )),
)
cdm <- cdmFromTables(
  tables = list("person" = person, "observation_period" = observation_period),
  cdmName = "my_example_cdm",
  cohortTables = list("cohort1" = cohort)
)
#> Warning: ! 5 column in person do not match expected column type:
#>  `person_id` is numeric but expected integer
#>  `gender_concept_id` is numeric but expected integer
#>  `year_of_birth` is numeric but expected integer
#>  `race_concept_id` is numeric but expected integer
#>  `ethnicity_concept_id` is numeric but expected integer
#> Warning: ! 3 column in observation_period do not match expected column type:
#>  `observation_period_id` is numeric but expected integer
#>  `person_id` is numeric but expected integer
#>  `period_type_concept_id` is numeric but expected integer
#> Warning: ! 2 column in cohort1 do not match expected column type:
#>  `cohort_definition_id` is numeric but expected integer
#>  `subject_id` is numeric but expected integer

cohortCount(cdm$cohort1)
#> # A tibble: 2 × 3
#>   cohort_definition_id number_records number_subjects
#>                  <int>          <int>           <int>
#> 1                    1              3               1
#> 2                    2              1               1
# }