Summary a generated cohort set
Usage
# S3 method for class 'cohort_table'
summary(object, ...)
Examples
library(dplyr, warn.conflicts = FALSE)
person <- tibble(
person_id = 1, gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0
)
observation_period <- tibble(
observation_period_id = 1, person_id = 1,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0
)
cdm <- cdmFromTables(
tables = list("person" = person, "observation_period" = observation_period),
cdmName = "test",
cohortTables = list("cohort1" = tibble(
cohort_definition_id = 1,
subject_id = 1,
cohort_start_date = as.Date("2010-01-01"),
cohort_end_date = as.Date("2010-01-05")
))
)
#> Warning: ! 5 column in person do not match expected column type:
#> • `person_id` is numeric but expected integer
#> • `gender_concept_id` is numeric but expected integer
#> • `year_of_birth` is numeric but expected integer
#> • `race_concept_id` is numeric but expected integer
#> • `ethnicity_concept_id` is numeric but expected integer
#> Warning: ! 3 column in observation_period do not match expected column type:
#> • `observation_period_id` is numeric but expected integer
#> • `person_id` is numeric but expected integer
#> • `period_type_concept_id` is numeric but expected integer
#> Warning: ! 2 column in cohort1 do not match expected column type:
#> • `cohort_definition_id` is numeric but expected integer
#> • `subject_id` is numeric but expected integer
summary(cdm$cohort1)
#> # A tibble: 6 × 13
#> result_id cdm_name group_name group_level strata_name strata_level
#> <int> <chr> <chr> <chr> <chr> <chr>
#> 1 1 test cohort_name cohort_1 overall overall
#> 2 1 test cohort_name cohort_1 overall overall
#> 3 2 test cohort_name cohort_1 reason Initial qualifying eve…
#> 4 2 test cohort_name cohort_1 reason Initial qualifying eve…
#> 5 2 test cohort_name cohort_1 reason Initial qualifying eve…
#> 6 2 test cohort_name cohort_1 reason Initial qualifying eve…
#> # ℹ 7 more variables: variable_name <chr>, variable_level <chr>,
#> # estimate_name <chr>, estimate_type <chr>, estimate_value <chr>,
#> # additional_name <chr>, additional_level <chr>