This function combines the functionalities of formatEstimateValue()
,
formatEstimateName()
, formatHeader()
, and formatTable()
into a single function. While it does not require the input table to be
a <summarised_result>
, it does expect specific fields to apply some
formatting functionalities.
Arguments
- result
A table to format.
- estimateName
A named list of estimate names to join, sorted by computation order. Use
<...>
to indicate estimate names. This argument requires that the table hasestimate_name
andestimate_value
columns.- header
A vector specifying the elements to include in the header. The order of elements matters, with the first being the topmost header. The vector elements can be column names or labels for overall headers. The table must contain an
estimate_value
column to pivot the headers.- groupColumn
Columns to use as group labels. By default, the name of the new group will be the tidy* column names separated by ";". To specify a custom group name, use a named list such as: list("newGroupName" = c("variable_name", "variable_level")).
*tidy: The tidy format applied to column names replaces "_" with a space and converts them to sentence case. Use
rename
to customize specific column names.- rename
A named vector to customize column names, e.g., c("Database name" = "cdm_name"). The function will rename all column names not specified here into a tidy* format.
- type
The desired format of the output table. See
tableType()
for allowed options.- hide
Columns to drop from the output table.
- .options
A named list with additional formatting options.
visOmopResults::tableOptions()
shows allowed arguments and their default values.
Examples
result <- mockSummarisedResult()
result |>
visTable(
estimateName = c("N%" = "<count> (<percentage>)",
"N" = "<count>",
"Mean (SD)" = "<mean> (<sd>)"),
header = c("Estimate"),
rename = c("Database name" = "cdm_name"),
groupColumn = c("strata_name", "strata_level"),
hide = c("additional_name", "additional_level", "estimate_type", "result_type")
)
overall; overall
age_group &&& sex; <40 &&& Male
age_group &&& sex; >=40 &&& Male
age_group &&& sex; <40 &&& Female
age_group &&& sex; >=40 &&& Female
sex; Male
sex; Female
age_group; <40
age_group; >=40