Create a ggplot from the output of summariseCharacteristics.
Source:R/plotCharacteristics.R
plotCharacteristics.Rd
Usage
plotCharacteristics(
result,
plotType = "barplot",
facet = NULL,
colour = NULL,
plotStyle = lifecycle::deprecated()
)
Arguments
- result
A summarised_result object.
- plotType
Either
barplot
,scatterplot
orboxplot
. Ifbarplot
orscatterplot
subset to just one estimate.- facet
Columns to facet by. See options with
availablePlotColumns(result)
. Formula is also allowed to specify rows and columns.- colour
Columns to color by. See options with
availablePlotColumns(result)
.- plotStyle
deprecated.
Examples
# \donttest{
library(CohortCharacteristics)
library(dplyr, warn.conflicts = FALSE)
cdm <- mockCohortCharacteristics()
results <- summariseCharacteristics(
cohort = cdm$cohort1,
ageGroup = list(c(0, 19), c(20, 39), c(40, 59), c(60, 79), c(80, 150)),
tableIntersectCount = list(
tableName = "visit_occurrence", window = c(-365, -1)
),
cohortIntersectFlag = list(
targetCohortTable = "cohort2", window = c(-365, -1)
)
)
#> ℹ adding demographics columns
#> ℹ adding tableIntersectCount 1/1
#> ℹ adding cohortIntersectFlag 1/1
#> ℹ summarising data
#> ✔ summariseCharacteristics finished!
results |>
filter(
variable_name == "Cohort2 flag -365 to -1", estimate_name == "percentage"
) |>
plotCharacteristics(
plotType = "barplot",
colour = "variable_level",
facet = c("cdm_name", "cohort_name")
)
results |>
filter(variable_name == "Age", estimate_name == "mean") |>
plotCharacteristics(
plotType = "scatterplot",
facet = "cdm_name"
)
results |>
filter(variable_name == "Age", group_level == "cohort_1") |>
plotCharacteristics(
plotType = "boxplot",
facet = "cdm_name",
colour = "cohort_name"
)
mockDisconnect(cdm)
# }