Format a summariseCohortTiming result into a visual table.
Source:R/tableCohortTiming.R
tableCohortTiming.Rd
Usage
tableCohortTiming(
result,
timeScale = "days",
uniqueCombinations = TRUE,
type = "gt",
header = strataColumns(result),
groupColumn = c("cdm_name"),
hide = c("variable_level", settingsColumns(result))
)
Arguments
- result
A summarised_result object.
- timeScale
Time scale to show, it can be "days" or "years".
- uniqueCombinations
Whether to restrict to unique reference and comparator comparisons.
- type
Type of table. Check supported types with
visOmopResults::tableType()
.- header
Columns to use as header. See options with
availableTableColumns(result)
.- groupColumn
Columns to group by. See options with
availableTableColumns(result)
.- hide
Columns to hide from the visualisation. See options with
availableTableColumns(result)
.
Examples
if (FALSE) { # \dontrun{
library(CohortCharacteristics)
library(duckdb)
library(CDMConnector)
library(DrugUtilisation)
con <- dbConnect(duckdb(), eunomiaDir())
cdm <- cdmFromCon(con, cdmSchem = "main", writeSchema = "main")
cdm <- generateIngredientCohortSet(
cdm = cdm,
name = "my_cohort",
ingredient = c("acetaminophen", "morphine", "warfarin")
)
timings <- summariseCohortTiming(cdm$my_cohort)
tableCohortTiming(timings, timeScale = "years")
cdmDisconnect(cdm)
} # }