
Get a custom tidy visualization of a summarised_result object
Source:R/tidy.R
      tidySummarisedResult.RdArguments
- result
 A summarised_result.
- splitGroup
 If TRUE it will split the group name-level column pair.
- splitStrata
 If TRUE it will split the group name-level column pair.
- splitAdditional
 If TRUE it will split the group name-level column pair.
- settingsColumns
 Settings to be added as columns, by default all settings will be added. If NULL or empty character vector, no settings will be added.
- pivotEstimatesBy
 Names from which pivot wider the estimate values. If NULL the table will not be pivotted.
- nameStyle
 Name style (glue package specifications) to customise names when pivotting estimates. If NULL standard tidyr::pivot_wider formatting will be used.
Examples
{
result <- mockSummarisedResult()
result |> tidySummarisedResult()
result |>
  tidySummarisedResult(
    settingsColumns =character(),
    pivotEstimatesBy = c("variable_name", "variable_level", "estimate_name")
  )
result |>
  tidySummarisedResult(
    settingsColumns =character(),
    pivotEstimatesBy = c("variable_name", "variable_level", "estimate_name"),
    nameStyle = "{estimate_name}_{variable_name}_{variable_level}"
  )
}
#> # A tibble: 18 × 12
#>    result_id cdm_name cohort_name age_group sex     `count_number subjects`
#>        <int> <chr>    <chr>       <chr>     <chr>                     <int>
#>  1         1 mock     cohort1     overall   overall                 3757580
#>  2         1 mock     cohort1     <40       Male                    1368529
#>  3         1 mock     cohort1     >=40      Male                     986021
#>  4         1 mock     cohort1     <40       Female                  6423973
#>  5         1 mock     cohort1     >=40      Female                  8174897
#>  6         1 mock     cohort1     overall   Male                    1567231
#>  7         1 mock     cohort1     overall   Female                  5118733
#>  8         1 mock     cohort1     <40       overall                 7105515
#>  9         1 mock     cohort1     >=40      overall                 3634426
#> 10         1 mock     cohort2     overall   overall                 6686055
#> 11         1 mock     cohort2     <40       Male                    7204168
#> 12         1 mock     cohort2     >=40      Male                    5419602
#> 13         1 mock     cohort2     <40       Female                  3933305
#> 14         1 mock     cohort2     >=40      Female                  3998490
#> 15         1 mock     cohort2     overall   Male                    2749445
#> 16         1 mock     cohort2     overall   Female                  1644105
#> 17         1 mock     cohort2     <40       overall                 8670615
#> 18         1 mock     cohort2     >=40      overall                 6532899
#> # ℹ 6 more variables: mean_age <dbl>, sd_age <dbl>,
#> #   count_Medications_Amoxiciline <int>,
#> #   percentage_Medications_Amoxiciline <dbl>,
#> #   count_Medications_Ibuprofen <int>, percentage_Medications_Ibuprofen <dbl>