Skip to contents

[Experimental] Provides tools for obtaining a tidy version of a summarised_result object.

Usage

tidySummarisedResult(
  result,
  splitGroup = TRUE,
  splitStrata = TRUE,
  splitAdditional = TRUE,
  settingsColumns = colnames(settings(result)),
  pivotEstimatesBy = "estimate_name",
  nameStyle = NULL
)

Arguments

result

A summarised_result.

splitGroup

If TRUE it will split the group name-level column pair.

splitStrata

If TRUE it will split the group name-level column pair.

splitAdditional

If TRUE it will split the group name-level column pair.

settingsColumns

Settings to be added as columns, by default all settings will be added. If NULL or empty character vector, no settings will be added.

pivotEstimatesBy

Names from which pivot wider the estimate values. If NULL the table will not be pivotted.

nameStyle

Name style (glue package specifications) to customise names when pivotting estimates. If NULL standard tidyr::pivot_wider formatting will be used.

Value

A tibble.

Examples

{
result <- mockSummarisedResult()

result |> tidySummarisedResult()

result |>
  tidySummarisedResult(
    settingsColumns =character(),
    pivotEstimatesBy = c("variable_name", "variable_level", "estimate_name")
  )

result |>
  tidySummarisedResult(
    settingsColumns =character(),
    pivotEstimatesBy = c("variable_name", "variable_level", "estimate_name"),
    nameStyle = "{estimate_name}_{variable_name}_{variable_level}"
  )
}
#> # A tibble: 18 × 12
#>    result_id cdm_name cohort_name age_group sex     `count_number subjects`
#>        <int> <chr>    <chr>       <chr>     <chr>                     <int>
#>  1         1 mock     cohort1     overall   overall                 3757580
#>  2         1 mock     cohort1     <40       Male                    1368529
#>  3         1 mock     cohort1     >=40      Male                     986021
#>  4         1 mock     cohort1     <40       Female                  6423973
#>  5         1 mock     cohort1     >=40      Female                  8174897
#>  6         1 mock     cohort1     overall   Male                    1567231
#>  7         1 mock     cohort1     overall   Female                  5118733
#>  8         1 mock     cohort1     <40       overall                 7105515
#>  9         1 mock     cohort1     >=40      overall                 3634426
#> 10         1 mock     cohort2     overall   overall                 6686055
#> 11         1 mock     cohort2     <40       Male                    7204168
#> 12         1 mock     cohort2     >=40      Male                    5419602
#> 13         1 mock     cohort2     <40       Female                  3933305
#> 14         1 mock     cohort2     >=40      Female                  3998490
#> 15         1 mock     cohort2     overall   Male                    2749445
#> 16         1 mock     cohort2     overall   Female                  1644105
#> 17         1 mock     cohort2     <40       overall                 8670615
#> 18         1 mock     cohort2     >=40      overall                 6532899
#> # ℹ 6 more variables: mean_age <dbl>, sd_age <dbl>,
#> #   count_Medications_Amoxiciline <int>,
#> #   percentage_Medications_Amoxiciline <dbl>,
#> #   count_Medications_Ibuprofen <int>, percentage_Medications_Ibuprofen <dbl>