# \donttest{
library(DrugUtilisation)
library(PatientProfiles)
cdm <- mockDrugUtilisation()
#> Warning: ! 6 column in person do not match expected column type:
#> • `gender_concept_id` is numeric but expected integer
#> • `race_concept_id` is numeric but expected integer
#> • `ethnicity_concept_id` is numeric but expected integer
#> • `location_id` is numeric but expected integer
#> • `provider_id` is numeric but expected integer
#> • `care_site_id` is numeric but expected integer
#> Warning: ! 1 column in observation_period do not match expected column type:
#> • `period_type_concept_id` is numeric but expected integer
#> Warning: ! 2 column in visit_occurrence do not match expected column type:
#> • `visit_concept_id` is numeric but expected integer
#> • `visit_type_concept_id` is numeric but expected integer
#> Warning: ! 10 column in condition_occurrence do not match expected column type:
#> • `condition_concept_id` is numeric but expected integer
#> • `condition_type_concept_id` is numeric but expected integer
#> • `condition_status_concept_id` is numeric but expected integer
#> • `stop_reason` is logical but expected character
#> • `provider_id` is logical but expected integer
#> • `visit_occurrence_id` is logical but expected integer
#> • `visit_detail_id` is logical but expected integer
#> • `condition_source_value` is logical but expected character
#> • `condition_source_concept_id` is logical but expected integer
#> • `condition_status_source_value` is logical but expected character
#> Warning: ! 2 column in drug_exposure do not match expected column type:
#> • `drug_concept_id` is numeric but expected integer
#> • `drug_type_concept_id` is numeric but expected integer
#> Warning: ! 2 column in observation do not match expected column type:
#> • `observation_concept_id` is numeric but expected integer
#> • `observation_type_concept_id` is numeric but expected integer
#> Warning: ! 4 column in concept do not match expected column type:
#> • `concept_id` is numeric but expected integer
#> • `valid_start_date` is character but expected date
#> • `valid_end_date` is character but expected date
#> • `invalid_reason` is logical but expected character
#> Warning: ! 2 column in concept_relationship do not match expected column type:
#> • `concept_id_1` is numeric but expected integer
#> • `concept_id_2` is numeric but expected integer
#> Warning: ! 4 column in concept_ancestor do not match expected column type:
#> • `ancestor_concept_id` is numeric but expected integer
#> • `descendant_concept_id` is numeric but expected integer
#> • `min_levels_of_separation` is numeric but expected integer
#> • `max_levels_of_separation` is numeric but expected integer
#> Warning: ! 9 column in drug_strength do not match expected column type:
#> • `drug_concept_id` is numeric but expected integer
#> • `ingredient_concept_id` is numeric but expected integer
#> • `amount_unit_concept_id` is numeric but expected integer
#> • `numerator_unit_concept_id` is numeric but expected integer
#> • `denominator_unit_concept_id` is numeric but expected integer
#> • `box_size` is logical but expected integer
#> • `valid_start_date` is character but expected date
#> • `valid_end_date` is character but expected date
#> • `invalid_reason` is logical but expected character
#> Warning: ! 6 column in person do not match expected column type:
#> • `gender_concept_id` is numeric but expected integer
#> • `race_concept_id` is numeric but expected integer
#> • `ethnicity_concept_id` is numeric but expected integer
#> • `location_id` is numeric but expected integer
#> • `provider_id` is numeric but expected integer
#> • `care_site_id` is numeric but expected integer
#> Warning: ! 1 column in observation_period do not match expected column type:
#> • `period_type_concept_id` is numeric but expected integer
codelist <- CodelistGenerator::getDrugIngredientCodes(cdm, "acetaminophen")
#> Warning: ! `codelist` contains numeric values, they are casted to integers.
cdm <- generateDrugUtilisationCohortSet(
cdm, "dus_cohort", codelist
)
cdm[["dus_cohort"]] <- cdm[["dus_cohort"]] |>
addDrugUse(ingredientConceptId = 1125315)
result <- summariseDrugUse(cdm[["dus_cohort"]])
#> ! names of group will be ignored
#> ℹ The following estimates will be computed:
#> • number_exposures: min, q05, q25, median, q75, q95, max, mean, sd,
#> count_missing, percentage_missing
#> • duration: min, q05, q25, median, q75, q95, max, mean, sd, count_missing,
#> percentage_missing
#> • cumulative_quantity: min, q05, q25, median, q75, q95, max, mean, sd,
#> count_missing, percentage_missing
#> • number_eras: min, q05, q25, median, q75, q95, max, mean, sd, count_missing,
#> percentage_missing
#> • initial_quantity: min, q05, q25, median, q75, q95, max, mean, sd,
#> count_missing, percentage_missing
#> • impute_daily_dose_percentage: min, q05, q25, median, q75, q95, max, mean, sd,
#> count_missing, percentage_missing
#> • impute_duration_percentage: min, q05, q25, median, q75, q95, max, mean, sd,
#> count_missing, percentage_missing
#> • initial_daily_dose_milligram: min, q05, q25, median, q75, q95, max, mean, sd,
#> count_missing, percentage_missing
#> • cumulative_dose_milligram: min, q05, q25, median, q75, q95, max, mean, sd,
#> count_missing, percentage_missing
#> ! Table is collected to memory as not all requested estimates are supported on
#> the database side
#> → Start summary of data, at 2024-11-04 09:25:22.051303
#> ✔ Summary finished, at 2024-11-04 09:25:22.218362
print(result)
#> # A tibble: 101 × 13
#> result_id cdm_name group_name group_level strata_name strata_level
#> <int> <chr> <chr> <chr> <chr> <chr>
#> 1 1 DUS MOCK cohort_name 161_acetaminophen overall overall
#> 2 1 DUS MOCK cohort_name 161_acetaminophen overall overall
#> 3 1 DUS MOCK cohort_name 161_acetaminophen overall overall
#> 4 1 DUS MOCK cohort_name 161_acetaminophen overall overall
#> 5 1 DUS MOCK cohort_name 161_acetaminophen overall overall
#> 6 1 DUS MOCK cohort_name 161_acetaminophen overall overall
#> 7 1 DUS MOCK cohort_name 161_acetaminophen overall overall
#> 8 1 DUS MOCK cohort_name 161_acetaminophen overall overall
#> 9 1 DUS MOCK cohort_name 161_acetaminophen overall overall
#> 10 1 DUS MOCK cohort_name 161_acetaminophen overall overall
#> # ℹ 91 more rows
#> # ℹ 7 more variables: variable_name <chr>, variable_level <chr>,
#> # estimate_name <chr>, estimate_type <chr>, estimate_value <chr>,
#> # additional_name <chr>, additional_level <chr>
cdm[["dus_cohort"]] <- cdm[["dus_cohort"]] |>
addSex() |>
addAge(ageGroup = list("<40" = c(0, 39), ">=40" = c(40, 150)))
cdm[["dus_cohort"]] |>
summariseDrugUse(strata = list("age_group", "sex", c("age_group", "sex")))
#> ! names of group will be ignored
#> ℹ The following estimates will be computed:
#> • number_exposures: min, q05, q25, median, q75, q95, max, mean, sd,
#> count_missing, percentage_missing
#> • duration: min, q05, q25, median, q75, q95, max, mean, sd, count_missing,
#> percentage_missing
#> • cumulative_quantity: min, q05, q25, median, q75, q95, max, mean, sd,
#> count_missing, percentage_missing
#> • number_eras: min, q05, q25, median, q75, q95, max, mean, sd, count_missing,
#> percentage_missing
#> • initial_quantity: min, q05, q25, median, q75, q95, max, mean, sd,
#> count_missing, percentage_missing
#> • impute_daily_dose_percentage: min, q05, q25, median, q75, q95, max, mean, sd,
#> count_missing, percentage_missing
#> • impute_duration_percentage: min, q05, q25, median, q75, q95, max, mean, sd,
#> count_missing, percentage_missing
#> • initial_daily_dose_milligram: min, q05, q25, median, q75, q95, max, mean, sd,
#> count_missing, percentage_missing
#> • cumulative_dose_milligram: min, q05, q25, median, q75, q95, max, mean, sd,
#> count_missing, percentage_missing
#> ! Table is collected to memory as not all requested estimates are supported on
#> the database side
#> → Start summary of data, at 2024-11-04 09:25:23.193551
#> ✔ Summary finished, at 2024-11-04 09:25:23.901625
#> # A tibble: 606 × 13
#> result_id cdm_name group_name group_level strata_name strata_level
#> <int> <chr> <chr> <chr> <chr> <chr>
#> 1 1 DUS MOCK cohort_name 161_acetaminophen overall overall
#> 2 1 DUS MOCK cohort_name 161_acetaminophen overall overall
#> 3 1 DUS MOCK cohort_name 161_acetaminophen overall overall
#> 4 1 DUS MOCK cohort_name 161_acetaminophen overall overall
#> 5 1 DUS MOCK cohort_name 161_acetaminophen overall overall
#> 6 1 DUS MOCK cohort_name 161_acetaminophen overall overall
#> 7 1 DUS MOCK cohort_name 161_acetaminophen overall overall
#> 8 1 DUS MOCK cohort_name 161_acetaminophen overall overall
#> 9 1 DUS MOCK cohort_name 161_acetaminophen overall overall
#> 10 1 DUS MOCK cohort_name 161_acetaminophen overall overall
#> # ℹ 596 more rows
#> # ℹ 7 more variables: variable_name <chr>, variable_level <chr>,
#> # estimate_name <chr>, estimate_type <chr>, estimate_value <chr>,
#> # additional_name <chr>, additional_level <chr>
# }